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Abstract

Successful operations of future multi-agent in-

telligent systems require efficient cooperation

schemes between agents sharing learning experi-
ences. We consider a pseudo-reailstlc world in

which one or more opportunities appear and dis-
appear in random locations. Agents use fuzzy

reinforcement learning to learn which opportu-

nities are most worthy of pursuing based on

their promised rewards, expected lifetimes, path

lengths and expected path costs. We show that

this world is partially observable because the his-

tory of an agent influences the distribution of its
future states. We consider a cooperation mech-

anism in which agents share experience by using

and updating one joint behavior policy. We also

implement a coordination mechanism for allocat-

ing opportunities to different agents in the same
world.

Our results demonstrate that K cooperative

agents each learning in a separate world over N

time steps outperform K independent agents each
learning in a separate world over K*N time steps,

with this result becoming more pronounced as the

degree of partial observability in the environment

increases. We also show that cooperation between

agents learning in the same world decreases perfor-

mance with respect to independent agents. Since

cooperation reduces diversity between agents, we

conclude that diversity is a key parameter in the

trade off between maximizing utility from cooper-

ation when diversity is low and maximizing utility

from competitive coordination when diversity is

high.

I. INTRODUCTION ......
=

In recent years there has been a considerable amount of

interest in multi-agent systems /e.g., Luck, 1997; Sycara,

1998]. One approach to modeling multi-agent learning is
to augment the state of each agent with the informatlo_

about other agents [Littman, 1994; Mataric, 1997; Ston_

and Veloso, 1999]. However, this approach is difficult to
implement in noisy environments where agents cannot re-

liably discern states and actions of ot=her agents. A more

decentralized approach is to give each agent the capability

of independent learning in the environment While allow-

ing agents to share learning experience when the), find it ....
beneficial.

Several cooperative learning models of this type have ......

been proposed. Kelly and Keating, [1998] considered sit-

uations where several robotic agents were learning to _

stationary and moving obstacles. A common set of fuzzy

automata was used by cooperating agents to represent

their possible states. Learning consisted of agents tak-

ing turns in updating probabilities with which action_s

were selected in each automaton. In another related wgrk, _

Tan [1993] simulated several hunters learn_ing to capture

a prey in a tile world using reinforcement learning (RL_. -
He studied two RL-based cooperation mechanisms: agents

updating a common policy and agents averaging period-

ically their individual policies. He found that both per'

formed equally well on this task, outperforming uncoop,

erative agents that were learning for the same numbe_r

of time steps. Whitehead [1991] obtained a theoretical

upper bound on performance improvementdue to _OlY- .........
eration between multiple agents in Markov DecisionPro-

cesses (MDP's). He showed that K agents learning over N

time steps can perform at best as one agent learning over

N*K time steps. This result was confirmed experimea_ally
by Tan.



II. OVERVIEW

Thispaperextendstheaboveresultsto PartiallyObserv-
ableMarkovDecisionProcesses(POMDP's)withcontin-
uousstatespaces.Weconsidera learningproblemwith
afixedmildnon-Markoviancharacterin statetransitions
andadjustablenon-Markoviancharacterin thestepcost
function.A stochasticandpartiallyobservabletileworld
is usedasa testingdomainin ourexperiments.This
worldbasicallyconsistsofmultipleopportunitiesofdiffer-
entrewardsappearingin randomlocationsandremaining
therefor arandomperiodof timedescribedby a known
probabilitydistribution.Eachstepin theworldcarriesa
variablecostdependingontheroughnessof theterrain.
In thisworld,agentslearnwhichopportunitiesaremost
worthyofpursuingbasedontheirpromisedrewards,ex-
pectedlifetimes,pathlengthsandexpectedpathcosts.
A detaileddescriptionof thisworldis givenin thenext
section.

In our first setof experiments,weanalyzeeffectsof
severalagentslearningin thesameworld. In orderto
supervisethecompetitionof agentsfor theexistingop-
portunities,weintroduceacoordinationmechanismthat
isparameterizedbya "selfishness"parameterS. This pa-

rameter controls the degree to which agents choose oppor-

tunities to pursue in order to maximize their own utility

vs. choosing them to maximize the team performance.

The value of S = 0.5 implies a behavior for all agents

where they weigh equally the desires of other agents. A

value of S = 1 implies a behavior where each agent puts

a weight of 1 on its own desires. We show that depending

on the model parameters, there is an optimal value of S,

0 < S < 1, that maximizes the total combined reward for

all agents. We also give an explanation why this value is
not 0.5.

In our second set of experiments, we implement one

of the cooperation mechanisms considered by Tan [1993]

that allows agents to share the learning experience. This
is one of the simplest cooperation mechanisms in which

several agents are using and updating the same set of Q-
values. The other mechanism considered by Tan [1993]

consisted of agents maintaining individual state values but

averaging them out periodically. Tan found that both of

these algorithms performed equally well.

In order to isolate effects of cooperation from those of

coordination, we first consider having multiple worlds with
the same statistical properties, each inhabited by a single

agent. Our results show that cooperation between agents
results in a significant performance improvement with re-

spect to independent agents learning for the same number

of time steps. This implies that in real world applications,

several robotic agents can achieve much better results if

they learn cooperatively for the allocated period of time

instead of learning independently.

Unlike Tan [1993], we are able to take our cooperation
results further and show that average performance of K

cooperative agents each learning for N time steps in our

domain is significantly higher than average performance

of K independent agents each learning for K*N number

of time steps, contrary to Whitehead's theoretical results
for MDP's. We show that this performance improvement

increases with an increasing level of partial observability

present in the environment. These cooperation results

suggest that cooperative performance is more robust than
individual performance in the presence of difficulties in

the learning problem such as nonstationarity and partial

observability.

In our third set of experiments, we analyze effects of

coordination on cooperative learning. We obtain an un-

expected result that several agents learning cooperatively
in the same world perform much worse than independent

agents. At the same time, if we create two parallel worlds
with the same statistlcal properties and allow agent i of

world 1 cooperate with agent i of world 2, then coopera-

tive agents again perform much better than independent
agents. Since cooperation between agents in the same

world reduces diversity between agents, we conclude that

diversity is a key parameter that trades off maximizing

utility from cooperation when diversity is low vs. maxi-

mizing utility from competitive coordination when diver-

sity is high.

III. DOMAIN DESCRIPTION

The world we have constructed is a variation of a tile

world. A location in this world is given by a lattice point

- a point with integer coordinates. At each time step, an

agent chooses to move either straight or diagonally from
its current location to one of the 8 adjacent locations.

Each step in the world has a certain cost, which is calcu-

lated using the potential field method: the cost of moving
to any location is equal to the potential at the destination.

The potential function is generated by randomly choosing

locations of deformations of varying strength that gener-

ate a potential field. The potential at any location due to

a certain deformation is given by

h
P=

(d + 0.5) 

where h is the height of the deformation and d is the

distance to it. The potential at the location of that de-

formation is equal to h. Potentials due to all deforma-

tions add up to give the final potential at. any location.

An agent then multiplies this sum by a step cost scal-

ing (SCS) parameter to obtain the cost of moving to the
considered location. A deformation is relocated at each



timestepwith asmallprobability,andits valuechanges
randomlyduringtherelocation.Hence,agentsaretravel-
lingthroughaconstantlychangingpotentialsurfaceand
donotspecializetheirpoliciesto a particularpatternof
deformations.

Opportunitiesthat promisesomerewardsappearran-
domlyin differentlocations.An opportunitycanexpire

--1

at time t with probability 1 -exp-_- where M is its mean

lifetime. If an agent moves to the location of an unexpired

opportunity, it receives the reward promised by that op-

portunity minus the total path cost since the beginning of

the episode. An opportunity disappears once it has been

reached by an agent and a new opportunity appears in

a randomly chosen location. After that, a new episode

begins. If the opportunity towards which the agent took
its last step expires, the agent obtains a negative reward

equal to its path cost traveled so far and a new episode

begins. The objective of an agent is to maximize the total
reward minus the total cost received during the simula-

tion.

Our tile world was designed to reflect the complex trade-
offs that humans encounter in many decision situations.

The notion of "opportunity" used in our domain descrip-

tion is equivalent to the notion of "alternative" in decision

analysis. One of the main difficulties in applying decision

analysis to complex situations is that of putting possible
outcomes in the order of preference. In the world de-

scribed above, the agent has to balance the reward of an

opportunity against its mean lifetime to come up with
some measure of reward the agent expects to receive.

Then, the agent has to balance distance to this oppor-

tunity with roughness of the path towards it to come up
with some measure of cost the agent expects to incur.

Finally, the agent has to balance expected reward with

expected cost to come up with the total desirability of the

opportunity.
In the next section we show that the problem of learning

the best opportunity to pursue in the described world is

very difficult, as it creates an extremely large state space

for the agent. However, we are able to find a state-space
reduction that still allows agents to learn very good poli-

cies. Also, as will become apparent in the next section,

the learning algorithm used by the agents does not rely

on the presence of discrete tiles in the world and wi!l work

just as well in a continuous world. We used discrete tiles

only for the ease Of computer implementation.

IV. LEARNING ALGORITHM

When the state space in a reinforcement learningproblem

is large, learning separate Q-values for every state-action

pair is very inefficient. In the early stages of learning it

is very unlikely that the same state will be visited again,

and hence the agent will always have to act based on ini-

tial Q-values. The standard approach for dealing with

this problem is to generalize the Q-values across states by

using a function approximation architecture Q(i, a, r) for

approximating Q(i,a), where r is the set of all learned

parameters arranged in a single vector. The basic param-

eter updating rule used by such a function approximation

architecture is:

rt +- rt + aVT_Q(i,a,r_)St, (1)

where a is the learning rate and 5 is the Bellman error

used in the corresponding learning rule for the look-up

table case:

Q(it, a) e-- Q(it, a) + a_t. (2)

For example, in the look-up table version of Monte Carlo

learning,

5t = _'_-t g(T) -- Q(it, a), (3)
V:t

where g(t) is the cost incurred at time t, 7 is the discount-

ing factor and the summation extends until the end of the

episode. In the look-up table version of TD(O) learning,

5t = g(t) + 7max_Q(it+l, a) Q(it, a). (4)

In this paper we will use fuzzy state aggregation as the

approximation architecture. That is,

K

Q(i, a) = _ q(k, a)#k(it), (5)
k=0

where q(k, a) is the Q-value of taking the action a in the
k-th fuzzy state sk and ttk (it) is the degree of membership

of state it to sk. If the action space is continuous, then

equation (5) still applies after changing pk(it) to #k (it, a).
Also note that equation (5) is linear in the learned param-

eters q(k, a); hence, fuzzy state aggregation is just a linear

approximation architecture.
With Q(i,a) given by equation (5), equation (1) be-

comes a matrix equation with each component given by: -

q(k, a) +-- q(k, a) + al_k (it)St. (6)

Equation (6) has a natural interpretation in the realm of

fuzzy state aggregations: the value of a fuzzy state-acti0n

pair (sk, a) gets updated proportionally to its eontributi?n ....
to the Q-value of the state-action pair (it, a) in equation

(5).
As will be described later, we found that the [earning

framework of average reward per time step is more appro-

priate for our domain than the discounted framework pre-
sented above. In this frame_w__o_rk,equation (6) still hoTdsl

except that 5 is given by [Sutton and Barto, 1998]:

T

5t = _ ^S-tg("r) - Q(it, a) - pt : (7)
"r_-O



for Monte Carlo learning, and by

5t = g(t) + 7max_Q(it+l, a) - Q(it, a) - pt (8)

for TD(O) learning. The quantity p represents the aver-

age reward per time step of the policy learned so far, to

which the average reward from every state-action pair is

compared. The quantity p is updated at every iteration

according to

pt *- pt + aSt. (9)

A. Coordination Algorithm

The purpose of the coordination algorithm used in this

paper is to allocate existing opportunities to the agents.
The coordination mechanism is initialized at every time

step with all opportunities being open to all agents. Then

the following process repeats.
REPEAT

Each agent considers its most preferred open opportu-

nity and asks all other agents for their preferred opportu-
nities and distances to them. If there is no conflict, the

agent finishes happy and quits. If there is a conflict, the
agent determines the potential winner (the closest agent

or the one with the highest preference if there is a tie). If

the agent is not the potential winner in a conflict, it in-

dicates that it is unhappy and passes control to the next

agent. If the agent is the potential winner , it performs
the winner arbitration. If after arbitration it still holds

the opportunity, the agent ends up happy and quits, if

not - the agent indicates that it is unhappy and passes

control to the next agent.

During tile winner arbitration, the potential winner
considers whether it should abandon the opportunity in

favor of its second choice and give up the first choice op-

portunity to the next closest agent (or the one with the

highest preference if a tie) that is open to the opportunity.

The winner abandons the opportunity if

$51 - (1 - S)52 < O,

where 51 is the agent's own 5 (i.e., difference in preferences

between the considered opportunity and the next most

-- - desirable that is still open) and 52 is the other agent's

5. If the winner abandons the opportunity, it closes itself

to it. If the winner doesn't abandon the opportunity, it

sends a signal to all other agents to close themselves to

the opportunity.

UNTIL all agents are happy.

Note that even totally selfish arbitration with S = 1

still produces positive results of informing other agents
about the uselessness of their attempts by closing off their

first choice opportunities if there is a conflict.

B. Representation for Learning

The full state of an agent at time t can bc described by:

i -- (il, i2, ..., iF), where iv is a group of five state varia2es
describing the opportunity p. These variables are:

1. distance to the opportunity

2. reward of the opportunity

3. path roughness to the opportunity

4. mean lifetime of the opportunity

5. relative direction of the opportunity

Path roughness to the opportunity gives the agent an ap-
proximate measure of the average cost per step on the way

to that opportunity'. It is obtained by first constructing

an ellipse with the major axis extending from the agent's

current location to the location of the opportunity and

passing some number of units beyond the opportunity.

The path roughness is then calculated as the sum of the

values of all deformations in that ellipse divided by the

area of the ellipse.

The values of each state variable are described using a

number of fuzzy labels, such as SMALL, MEDIUM, and
LARGE. Each value can match one or more labels with

a certain membership value. For example, if the opportu-

nity rewards vary between 0 and 100 units, then the value
of 30 can be SMALL to degree 0.7 and MEDIUM to de-

gree 0.3, while the value of 10 can be SMALL to degree

1.0. A fuzzy state is represented by a collection of fuzzy

labels, one for each state variable. For example, one of

the states in the full learning problem can be: (distance
to opportunity 1 is LARGE) AND (reward of opportu-

nity 1 is LARGE) AND (mean lifetime of opportunity 1 is

SMALL) AND .... The degree to which an agent belongs

to a certain fuzzy state is the minimum of the degrees to

which all state variables belong to the labels describing

this fuzzy state.

In the simplest case, each state variable is described by

only two fuzzy labels: SMALL and LARGE. Then there
are 2sP possible fuzzy states for each agent.. This seems to

be an impractically large number of fuzzy states which de-

feats the purpose of significantly reducing the state space

through state aggregation.

In order to avoid this exponential growth we restrict

the Q-value of a state-action pair (i,p) only to be a func-

tion of (ip,p). That is, when the agent evaluates action p

of moving towards opportunity p, it can only observe the

information about that opportunity. With this r2stric-
tion an agent will not be able to learn that it is better to

move towards an opportunity surrounded by other ones

(in ease the chosen opportunity disappears, there will be



otheronesnearby)ratherthanmovingtowardsan iso-
latedopportunity.Thisstatereductionalsoimpliesthat
therelativedirectionofeachopportunitycanbeomitted
fromthestatedescriptionif wespecifythattheagentwill
alwaysgodirectlytothechosenopportunity.Thiswillnot
changethenatureof ourexperimentssincetheproblem
of choosingthedirectionof motiononceanopportunity
ischosenisveryeasyin comparisonwith theproblemof
choosinganopportunityto pursue.

Thefinallearningproblembecomesinessencetheprob-
lemof evaluating24fuzzystatesfor eachconsideredop-
portunityp. Then, in order to find the Q-value of the

state-action pair (i,p), the agent will consider the four
relevant state variables and evaluate the degree to which

this quadruple belongs to each of the 16 fuzzy states.

The agent will then use equation (5) for combining the
Q-values of the fuzzy states to come up with the final

Q-value.
Tile final learning problem faced by the agent is non-

Markovian for two reasons. First of all, because of the

state restriction, knowledge of the previous opportunities

that the agent was pursuing affects the probability dis-
tribution of the future states. For example, if a better

opportunity appears near the one the agent was pursuing,

the agent will switch to pursuing it and all components
of its state vector will change. However, if the new op-

portunity disappears very soon, then the agent will most

likely switch back to pursuing its original opportunity.

Therefore, remembering the characteristics of the origi-

nal opportunity biases our beliefs about future states if

the switching situation described above takes place. Sec-

ond, the learning problem with using all 5P state variables

is still non-Markovian because of the partial observability

in the cost function that creates a history dependence.

For example, knowledge of the trend in the costs incurred

during the previous time steps affects the probability dis-
tribution of the future step costs because the pattern of

surrounding deformations is likely to remain unchanged.
Note that an increase in the step cost scaling parameter

increases the importance of the partial observability of the

state and consequently the degree to which the learning

problem is non-Markovian.

V. EXPERIMENTAL SETUP

We used a 20-by-20 tile world in all experiments. There

were always 10 opportunities in the world, and whenever
one of them would be reached by an agent or would expire,

a new one would appear in a random location. The mean

lifetime of each appearing opportunity was uniformly dis-
tributed between 5 and 20, and its value was uniformly

distributed between 0 and 100. The values of appearing

.3 .7 I

Figure 1: Fuzzy labels used by the agents

bility 0.01 and its value would randomly change in the

process. There were 20 deformations in the world.
For faster simulations, we used only two fuzzy labels,

SMALL and LARGE as shown in Figure 1. The values

of variables with finite ranges were scaled to the range

[0,1], while the value of path roughness was scaled so that
the expected roughness would correspond to 0.5. The ex-

pected roughness was calculated as the expected value of

each deformation multiplied by the number of deforma-

tions in the tile world and divided by the area of the world.

The learning rate for the k-th fuzzy state sk is given by

1
_ - t-1 (i0)

 k(iT)

where #k(it)is the degree of membership of a state it to

fuzzy state Sk. The above formula is a natural extension
of decreasing the learning rate for crisp states, where the

learning rate for state i at time t is 1 divided by the num-
ber of visits to state i before time t.

At the beginning of every experiment, all Q-values were
set to 0. We found that allowing agents to take a small

fraction of random exploratory actions only decreased

their performance, which is probably due to the fact that
the stochastic nature of our world provided enough ex-

ploration as it is. Also, value function approximation ar-
chitectures come with a benefit of automatic exploration,

and therefore suboptimal actions exploring the environ-
ment are not needed. The value of a state-action pair

(i,a) gets updated when the agent takes action a in any

state j similar to state i. Therefore, taking action a in

any state contributes to the Q-values of state-action pairs

(i, a) for all states i via a chain reaction.

The issue of exploration can also be solved by initial-

izing all Q-values higher than the actual ones. In this

case, the value of any action will be decreased after it is

chosen, and the competing actions will become preferable.

This approach guarantees that the agent will explore all
actions in the states it visits often. However, in this case

it can take a very long time for the agent to settle onto
the optimal policy, and that agent's performance at the

early stages of learning will be very poor. In our problem,

deformations were uniformly distributed between 0 and the true Q-values range between -50 and 50 depending

100. Each deformation would get relocated with proba- on the fuzzy state. After comparing performance of an



agentinitializedwithQ-valuesof50withanagentinitial-
izedwithQ-valuesequalto 0, wefoundthat duringthe
first 100timestepsthefirst agentobtainedperformance
similarto a randomagent(i.e.,theonethat randomly
choosesbetweenavailableopportunities),whilethe later
agentconsistentlyperformedmuchbetter.Becauseofthe
abovediscussion,noexplorationwasdonein theexperi-
mentsdescribedbelow.

Cooperationalgorithmshavethegreatestinfluenceon
performanceat theearlystagesof learningwhenagents
havenot finishedexploringsufficientlythe wholestate
space.Therefore,weusedaveryshorttimespanofafew
hundredtimestepsto compareperformancesof different
algorithms.

Accordingto the averagerewardframework,theper-
formanceof anagentis givenby thesumof all rewards
minusthesumof all stepcostsdividedby the number
of timesteps.Performanceof themulti-agentteamwas
definedastheaverageof this measureoverall agents.
Notethatthismeasureisequivalentto thetotal reward
obtainedduringthewholesimulation.Wehavealsoex-
perimentedwith theregulardiscountedrewardlearning.
However,wefoundthat this formof learningimplicitly
teachesagentsto maximizerewardobtainedperepisode.
Therefore,ratherthanchoosingtwicein arowanoppor-
tunity10stepsawaythat hasa Q-valueof 10,theagent
wouldchooseto goforanopportunity20stepsawaythat
hasaQ-valueof15.Thisisanundesirablebehaviorinour
domain,andhencewechosetheaveragerewardframework
forlearning.

All performanceresultsrepresentaveragesof5000sim-
ulationsonthetestingdata.Suchalargenumberofsim-
ulationswasneededbecauseofahighlystochasticnature
of our testingdomain.In eachsimulation,thetraining
periodlastedfor a specifiednumberof timeSteps,and
thetestingperiodlastedfor500timesteps.

A. Experimental Results and Discussion

We used MC learning with an initial learning rate o_= 0.1

for the first set of experiments. We found that for every

parameter set the agent learns to rank correctly most of

the 16 fuzzy states in less than 1000 episodes: the value

of a state increases as the distance to the opportunity de-

creases, the opportunity reward increases, the mean life-

time of the opportunity increases, and the path roughness

decreases. Examples of the state values after 1000 itera-

tions for step cost scaling equal to 25 are shown in Table
1.

As Table 1 suggests, the learned fuzzy state values are

dependent on the model parameters, such as the step cost

scaling parameter, mean lifetime, etc. For example, as the

step cost decreases or the mean lifetime of opportunities

increases, the agent learns to go for the opportunity with

DISTANCE REWARD ROUGHNESS LIFETIME

LARGE1 LARGE2 LARGE3 LARGE4

LARGE1 LARGE2 LARGE3 SMALL4

LARGE1 LARGE2 SMALL3 LARGE4

LARGE1 LARGE2 SMALL3 SMALL4

LARGE1 SMALL2 LARGE3 LARGE4

LARGE1 SMALL2 LARGE3 SMALL4

LARGE1 SMALL2 SMALL3 LARGE4

LARGE1 SMALL2 SMALL3 SMALL4

SMALLI LARGE2 LARGE3 LARGE4

SMALL1 LARGE2 LARGE3 SMALL4

SMALL1 LARGE2 SMALL3 LARGE4

SMALL1 LARGE2 SMALL3 SMALL4

SMALL1 SMALL2 LARGE3 LARGE4

SMALL1 SMALL2 LARGE3 SMALL4

SMALL1 SMALL2 SMALL3 LARGE4

SMALL1 SMALL2 SMALL3 SMALL4

VALUE

-3.24

-1.41

-2.49

-1.88

-0.75

-2.25

-2.88

-0.67

-3.28

-I .50

22.74

3.62

-1.14

-1.26

-0.30

-1.82

Table 1: Examples of state values.

Team-optimal agents (S = 0.5) # = 5.40

Selfish agents (S = 1) # = 6.02

Team-conscious agents (I = 0.3) # = 6.18

cr = 0.12

= 0.08

a = 0.06

Table 2: Comparison of coordination methods

the highest value more often than for the closest one.

In our first set of experiments, we compare performance

of 3 agents in a single world learning for 200 time steps

while using different coordination strategies. The step cost

scaling parameter was set to 5 for these experiments. The

team's average reward and standard deviation over 5000
simulations are shown in Table 2.

In these experiments, team-optimal behavior does not

result in a best performance because the coordination

mechanism is designed to work when the Q-values of all

agents have converged. Since our experiments test agents

at the early stages of learning, it might not be wise to

give up an opportunity to an agent that is far away but

that wants it more because its value might erroneously

be too high. In this case, the far away agent will incur

too much cost while travelling to this opportunity and

will reduce performance of the team. Therefore, team-

conscious agents have a penalty that they impose on com-

peting agents for being further away from an opportunity
than themselves. More specifically, the parameter I=0.3

implies that an agent increases its selfishness parameter S

by 0.3 for every unit of distance that the other agent is

further away from the opportunity.

In the next set of experiments we compare effects of co-

operative and independent learning when only one agent

is present in each world. We used 3 agents in these exper-



3 cooperativeagents,t = 200 # = 7.63 a = 0.09 3 independent agents # = 6.73 a = 0.05

3 independent agents, t = 600 p = 7.61 a = 0.06 3 cooperative agents # = 3.80 a = 0.06

3 non-learning agents # = 3.58 a = 0.07 3 parallel cooperative agents # = 6.68 a = 0.07

Table 3: Comparison of cooperative and independent

learning for SCS=5

3 cooperative agents, t = 200

3 independent agents, t = 600

3 non-learning agents

#=6.32 a=0.09

#=6.04 a=0.07

#=0.44 cr=0.08

Table 4: Comparison of cooperative and independent

learning for SCS=25

iments, one per world. Cooperative agents were learning

for 200 time steps, while independent agents were learn-

ing for 600 time steps. The step cost scaling parame-

ter SCS was set to either 5 or 25, corresponding to low

and high degrees of partial observability in the environ-

ment. As a benchmark, we also evaluated performance of

non-learning agents that acted based on initial Q-values.

These agents would randomly choose the opportunity to

pursue, since all Q-values were initialized to be equal. The
obtained results are summarized in Tables 3 and 4.

These results show that cooperative agents consistently

outperform independent agents learning over a three times

longer time interval. This result is very counterintuitive,

since three agents sharing state values basically perform

three times more exploration than a single agent during

the same time interval. It is also interesting to note that

the performance improvement of cooperative over inde-

pendent agents increases with an increasing level of partial

observability present in the environment.

Finally, we conduct experiments showing the effects of

coordination on cooperation. We first compare perfor-
mance of 3 independent agents coordinating in the same

world with 3 cooperative agents coordinating in the same

world. The last experiment considers two parallel worlds

with 3 agents coordinating in each world. In this experi-

ment, agent i in world 1 cooperates with agent i in world

2. In these experiments, independent agents were learning

for 400 time steps while cooperative agents were learning

for 200 time steps. The results are summarized in Tables
5 and 6.

This experiment shows the unexpected results that co-

operative agents that are learning in a competitive en-

vironment perform much worse than independent agents

learning in the same environment. This might be ex-
plained by the fact that experience sharing reduces di-

Table 5: Effects of coordination on cooperation for SCS=5

3 independent agents [l -- 3.52 o" = 0.09

3 cooperative agents p = -0.48 a = 0.08

3 parallel cooperative agents p = 3.99 a = 0.11

Table 6:

SCS=25
Effects of coordination on cooperation for

versity between agents and hence increases the number of

conflicts they have when choosing the opportunity to pur:

sue. This hypothesis is supported by the superior perfor-
mance of cooperative agents in the third setup of the ex-
periments, where agents were cooperating with their twins

in a parallel world while maintaining diversity within the
same world. Also, just as in previous experiments, for a

low degree of partial observability the cooperative perfor-

mance is comparable to independent performance over a
twice longer time interval. As the partial observabi!it3:is

increased, cooperation shows clear advantages over inde-
pendent performance. - ....

A very useful implication of the above result is demon-

strated in the last set of experiments. In the first setup,

a 20-by-40 world is populated by 2 agents, which learn

independently. In the second setup, 2 agents learn coop-

eratively in the same world. In the third setup, the world

is divided in two parts, 20-by-20 each. The two agents
learn independently, and each agent is able to see only

those opportunities that appear in its half. The fourth

setup is just like the third one, except that agents are al-
lowed to cooperate. All agents learned for 200 time Steps.

The results for the step cost scaling parameter equal to 5

are given in Table 7.

The results show that performance of several agents

competing for the same set of opportunities can be in-

2 independent agents, 20x40 world
2 cooperative agents, 20x40 world

2 independent agents, split world

2 cooperative agents, split world

#=3.23 a 0.05

#=1.61 a=0.09

#=5.48 _r=0:08

#=6.24 a=0.10

Table 7: Taking full advantage of cooperation by elimi-

nating the coordination problem.



creasedbyrestrictingtheagents'operationsto separate
regionsof the world. Besidesthe basicadvantagesof
this divide-and-conquerapproach,spatialspecialization
alsoallowsagentsto takea full advantageof coopera-
tion throughexperiencesharing,sincethe coordination
problemgetseliminated.

VI. CONCLUSIONS

We showed that a team-optimal coordination strategy

does not have to give team optimal results, which should

alert other researchers to the issue of multi-agent coor-
dination. We have also tested how conclusions obtained

by other researchers about performance of cooperation al-

gorithms in small MDP's carry over to POMDP's with
continuous state spaces.

We found that the cooperation method of common pol-

icy updating performs very well in partially observable
environments and that its benefits increase with an in-

creasing level of partial observability present in the envi-

ronment. In fact, we showed that K agents learning coop-

eratively over N time steps Significantiy outperform K in:

dependent agents learning over K*N time steps, contrary

to the theoretical results obtained for MDP's [Whitehead,

1991].

Finally, we have shown that a tradeoff exists between

experience sharing and coordination. One of the impli-

cations of this tradeoff is that introducing spatial restric-

tions on operations of autonomous agents in competitive
environments can actually improve the team performance

by eliminating the coordination problem and taking full

advantages of cooperative learning.
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